The Factors that Influence Skin Penetration of Solutes*

MICHAEL H. ABRAHAM, HARPREET S. CHADHA AND ROBERT C. MITCHELL \dagger

Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, and \dagger SmithKline Beecham Pharmaceuticals, The Frythe, Welwyn, Herts AL6 9AR, UK

Abstract

In this study, human skin permeation data are analysed using a number of physicochemical descriptors. It is shown that the equilibrium distribution of compounds between the stratum corneum and water $\left(\log \mathrm{K}_{\mathrm{m}}\right)$ can be correlated with either water-octanol partition coefficients ($\log \mathrm{P}_{\text {oct }}$) or Abraham solute descriptors. The latter reveals that partitioning of compounds is governed by solute size and hydrogenbond acidity that favour the stratum corneum, and solute dipolarity/polarizability, and hydrogen-bond basicity that favour water.

For water-skin permeation coefficient $\left(\log k_{p}\right)$ data it is demonstrated that $\log \mathrm{P}_{\text {oct }}$ cannot be used as a descriptor across a wide range of chemical families, but that $\log k_{p}$ can be correlated using Abraham solute descriptors. These disclose that $\log \mathrm{k}_{\mathrm{p}}$ values are increased by solute size and decreased by solute dipolarity/polarizability, hydrogen-bond acidity and hydrogen-bond basicity. It is suggested that different solutes travel through the stratum corneum by the same route, which cannot be distinguished as an intercellular or transcellular mechanism.

Backward skin permeation is examined and it is demonstrated that factors governing this process can be rationalized. Furthermore, it is shown that using the Abraham analysis, $\log \mathrm{P}_{\text {oct }}$ can be corrected to correlate $\log \mathrm{k}_{\mathrm{p}}$ over a wide range of compounds.

The determination of solute descriptors is also described, indicating that Abraham solute descriptors can be obtained by substructure summation and partition coefficient measurements, so that dermatological properties can be predicted for solutes without the necessity for synthesis.

An area of increasing interest to many important industries is the penetration of chemicals through the skin. For example, in the pharmaceutical industry, not only is the interest in skin for the traditional topical applications, such as anti-inflammatory agents, but also as an alternative drug delivery mechanism, which has some biopharmaceutical benefits such as bypassing hepatic first-pass elimination and improving compliance (Kai et al 1992). To the cosmetic industry, skin penetration is important where penetrative agents are employed to alter skin quality (Barry 1988). Skin penetration by environmental pollutants is another concern especially to occupational toxicology, as transdermal absorption of noxious solutes is acknowledged to be an important uptake route (Houk \& Guy 1988). However, measurement of the penetration of chemicals into and through skin is laborious and can involve ethical difficulties with either human or animal experiments. Hence there is a need for a method which is capable of predicting and explaining the physicochemical factors that determine percutaneous penetration. An important starting point for the development of such a method is an understanding of the structure of skin.

Skin is composed of three principal layers, the epidermis, the dermis and subcutaneous fat. The subcutaneous fat is located below the dermis and functions as a fat storage layer, with insulating and protecting (shock-absorbing) properties. It does not have a role in percutaneous penetration because it is below the vascular system, which is located

[^0]in the dermis (Singh \& Singh 1993). The dermis (2 mm) is an acellular connective tissue which supports blood vessels and nerves. Hair follicles, sebaceous glands and sweat glands stem from here to reach the skin surface. Transport of solutes in this area is rapid, moving via microvascular blood vessels into the systemic circulation. Above the dermis is the epidermis, which is essentially divided into two parts. The inner part is viable epidermis $(150 \mu \mathrm{~m})$ (Houk \& Guy 1988) in which the cells proliferate and then change to form the dead cells of the stratum corneum. The stratum corneum ($10-15 \mu \mathrm{~m}$) forms the outermost part and is of great importance to the study of skin penetration because it is the principal barrier, the main rate-determining step in solute penetration. The cells of the stratum corneum are cornified, containing dense crystallized keratin, which are often described as being hydrophilic as they contain very little lipid. The cells are flat, elongated and closely packed. They are surrounded by an intercellular lipid matrix, the exact nature of which has, until recently, been rather unclear. Currently it is understood that the matrix is composed of lipid and aqueous regions, arranged in layers (Elias 1981). This intercellular matrix makes up between 10 and 30% of the total volume (Grayson \& Elias 1982). A particularly important property of the stratum corneum, in the context of this study, is its ability to become heavily hydrated. Under hydrating conditions, Raykar et al (1988) report water uptake of as much as 4.76 mg of water per mg of dry abdominal skin. Values around $2.5 \mathrm{mg} \mathrm{mg}^{-1}$ are more common, suggesting that hydrated stratum corneum is typically about $70 \% \mathrm{w} / \mathrm{w}$ water.
Three possible mechanisms have been suggested for solute permeation through the stratum corneum. The first can be

Fig. 1. A depiction of the currently suggested intercellular and transcellular micro routes for solute entry into the stratum corneum.
described as the shunt route, which provides a parallel pathway by which solutes can be absorbed by sweat ducts and hair follicles without hindrance by the stratum corneum. This mechanism is minimized by having only a very small fractional area ($10^{-2}-10^{-3}$ of total skin area). The second and third mechanisms are the intercellular and transcellular routes (Scheuplein 1965, 1978; Barry 1988) (Fig. 1). For the transcellular route, solutes pass directly through the corneal cells and intermediary intercellular lipid matrix, whilst for the intercellular route, solutes diffuse around the corneal cells in a tortuous manner, remaining constantly in the intercellular matrix.
Two experimental aspects of skin penetration have been studied and are of particular interest. Firstly, water-skin partition coefficients (K_{m}) have been determined, in which excised human skin has been treated as a partitioning phase (Scheuplein 1965; Scheuplein et al 1969). Secondly, solute permeation rates through skin (k_{p}) have been determined (Scheuplein 1965; Scheuplein et al 1969; Roberts et al 1977), in which the stratum corneum is used as a membrane between an aqueous donor half-cell and an aqueous acceptor half-cell. Although all these experiments have been done in-vitro, they do not suffer from the often pronounced differences between in-vivo and in-vitro experiments of other biological systems, because the principal barrier, the stratum corneum, is in essence a dead layer in the living organism (Marks et al 1988).
The data produced by these studies have been analysed by various workers to find a model capable of explaining the permeation process and to predict penetration without recourse to morally objectionable experiments. However, an issue often neglected by workers concerning these studies,
is that they are conducted in aqueous solution. This has a profound effect on skin properties and under these conditions the skin becomes hydrated (Scheuplein et al 1969). Therefore, any deductions from these studies do not directly pertain to the skin in-vivo, but rather to heavily hydrated skin. Nevertheless the results are still very useful, because under normal in-vivo conditions the skin becomes hydrated easily, and more so under therapeutic conditions, because drugs are normally administered either in solution (water/ gel solvent vehicle) or with the skin occluded (using a bandage or patch) which also has a pronounced hydration effect.
In this paper, we analyse the results from the above studies in terms of the methodology outlined below, and, additionally, we compare the results of our analysis with those of previous analyses.

Methodology

The methodology is based on the general solvation equation (Abraham 1993a):

$$
\begin{equation*}
\log \mathrm{SP}=\mathrm{c}+\mathrm{r} \mathrm{R}_{2}+\mathrm{s} \pi_{2}^{\mathrm{H}}+\mathrm{a} \Sigma \alpha_{2}^{\mathrm{H}}+\mathrm{b} \mathrm{\Sigma} \beta_{2}^{\mathrm{H}}+\mathrm{vVx} \tag{1}
\end{equation*}
$$

In this equation, SP is some property of a series of solutes in a given system, and the explanatory variables, or descriptors, are solute properties as follows.
R_{2} is an excess molar refraction that can be determined simply from a knowledge of the compound refractive index (Abraham et al 1990a). Since R_{2} is almost an additive property, it is quite straightforward to deduce values for compounds that are solid at room temperature. The \mathbf{R}_{2}
descriptor represents the tendency of a solute to interact with a phase through π or n electron pairs.
π_{2}^{H} is the solute dipolarity/polarizability (Abraham et al 1991), it being not possible to devise descriptors for these properties separately. At present some 1000 values of π_{2}^{H} are known, and it is possible to obtain further values by use of various water-solvent partition coefficients (Abraham 1993b).
$\Sigma \alpha_{2}^{\mathrm{H}}$ is the solute effective or overall hydrogen-bond acidity. For mono-acids, this descriptor was originally obtained directly from hydrogen-bond complexation constants (Abraham et al 1989), as α_{2}^{H}, and in this way values were found for many types of solutes such as carboxylic acids, alcohols, and phenols (Abraham 1993b). Now that the acid scale is established, further values of $\Sigma \alpha_{2}^{\mathrm{H}}$ can be obtained by use of partition coefficients.
$\Sigma \beta_{2}^{\mathrm{H}}$ is the solute effective or overall hydrogen-bond basicity. Again, for mono-bases, this was first obtained from hydrogen-bond complexation constants, as β_{2}^{H}, (Abraham et al 1990b) and modified and extended through water-solvent partition coeffients. Leahy et al (1992) have examined partition in four water-solvent systems using an equation that resembles equation 1 , but with rather different descriptors. There were a number of solutes investigated by Leahy et al (1992) for which no constant β-value could be found. In other words, for these solutes the relative effective hydrogen-bond basicity varies with the solvent system. Abraham (1993b) later showed that this was also the case with equation 1 , but as it happens, none of these solutes are included in any of the datasets examined in this work.
Vx is the McGowan characteristic volume that can be calculated for any solute simply from molecular structure, using a table of atomic constants (Abraham \& McGowan 1987).

The coefficients in equation 1 are found by the method of multiple linear regression analysis and serve to characterize the phase in question as follows: the r-constant is a measure of the propensity of the phase to interact with solute π and n electron pairs; the s-constant describes the phase dipolarity/ polarizability; the a-constant is a measure of the phase hydrogen-bond basicity; the b-constant measures the phase hydrogen-bond acidity; and the v-constant is a measure of the phase lipophilicity. For cases where \log SP refers to distribution between phases, these constants will reflect the difference in properties of the two phases.

Two particular applications (Abraham et al 1994a) of equation 1 are of importance in this work. Firstly, wateroctanol partition coefficients, as $\log \mathrm{P}_{\text {oct }}$, were shown to follow equation 2 :

$$
\begin{aligned}
& \log \mathrm{P}_{\mathrm{oct}}= 0.088+0.562 \mathrm{R}_{2}-1.054 \pi_{2}^{\mathrm{H}}+0.034 \Sigma \alpha_{2}^{\mathrm{H}} \\
&-3.460 \Sigma \beta_{2}^{\mathrm{H}}+3.814 \mathrm{Vx} \\
& \mathrm{n}=613 \quad \rho=0.9974 \quad \text { s.d. }=0.116 \quad \mathrm{~F}=23161.6
\end{aligned}
$$

Here, n is the number of data points, ρ is the correlation coefficient, s.d. is the regression standard deviation and F is the Fisher F-statistic.

This equation is important in that it shows that the main factors influencing water-octanol partitions are solute
dipolarity and basicity that favour water, and solute size that favours octanol. Solute acidity plays a negligible part because water and wet octanol have very similar hydrogenbond basicities. Secondly, the $\Delta \log P$ parameter of Seiler (1974), defined as $\Delta \log \mathrm{P}_{16}=\log \mathrm{P}_{\text {oct }}-\log \mathrm{P}_{16}$, where the latter refers to the water-hexadecane system, was shown to follow equation 3 :

$$
\begin{align*}
\Delta \log \mathrm{P}_{16}= & -0.072-0.093 \mathrm{R}_{2}+0.528 \pi_{2}^{\mathrm{H}}+3.655 \Sigma \alpha_{2}^{\mathrm{H}} \\
& +1.396 \Sigma \beta_{2}^{\mathrm{H}}-0.521 \mathrm{Vx} \tag{3}
\end{align*}
$$

$$
\mathbf{n}=288 \quad \rho=0.9833 \quad \text { s.d. }=0.173 \quad \mathrm{~F}=1646.3
$$

This shows, for the first time, that the $\Delta \log \mathrm{P}$ parameter reflects not only solute acidity but also solute dipolarity, basicity and size.

Analysis of Skin Penetration

Determination of solute descriptors

To construct an equation for skin penetration data which is similar to equations 2 and 3 , it is necessary to obtain the five solute descriptors in the general equation (eqn 1). For the alcohols (Scheuplein 1965; Roberts 1976) and phenols (Roberts et al 1977) solute descriptors were readily available from previous studies. However, for the steroids (Scheuplein et al 1969) new solute descriptors had to be determined. Since Vx can be obtained by simple arithmetic, we are essentially left with four descriptors- $\mathrm{R}_{2}, \Sigma \alpha_{2}^{\mathrm{H}}, \Sigma \beta_{2}^{\mathrm{H}}$ and π_{2}^{H}-that need to be determined.
$\mathrm{R}_{2}, \Sigma \alpha_{2}^{\mathrm{H}}$ and $\Sigma \beta_{2}^{\mathrm{H}}$ were determined by summing the values for the appropriate fragments shown in Table 1. The values for these fragments were obtained from partition coefficients (Abraham et al 1994b). In the case of \mathbf{R}_{2}, a value of 1.15 was used for the unsubstituted hydrocarbon four-ring steroid system, and the $\Delta \mathrm{R}_{2}$ values are the additional fragment values. Thus for testosterone $\mathrm{R}_{2}=1.15+0.261 \quad$ (3-carbonyl \quad 4-ene) $+0.127 \quad$ (17- α hydroxy) $=1.538, \Sigma \alpha_{2}^{\mathrm{H}}=0.32$ (17- β-hydroxy) and $\Sigma \beta_{2}^{\mathrm{H}}=$ 0.63 (3-carbonyl-4-ene) $+0.56(17-\alpha$-hydroxy) $=1 \cdot 19$.

Table 1. Fragment values of $\mathrm{R}_{2}, \Sigma \alpha_{2}^{\mathrm{H}}$ and $\Sigma \beta_{2}^{\mathrm{H}}$ for steroids.

Substructure	$\Delta \mathbf{R}_{2}{ }^{\text {a }}$	$\Sigma \alpha_{2}^{\text {H }}$	$\Sigma \beta_{2}{ }^{\text {H }}$
3-Carbonyl	0.045	0.00	0.56
3-Carbonyl-4-ene	0.261	0.00	0.63
3-Carbonyl-1,4-diene	0.445	0.00	0.63
3- β-Hydroxy	$0 \cdot 115$	$0 \cdot 32$	0.57
5-Ene	0.055	0.00	$0 \cdot 10$
11-Carbonyl	0.045	0.00	0.27
11- β-Hydroxy	0.115	0.25	0.30
17-Carbonyl	0.057	0.00	0.52
17- β-Hydroxy	0.127	$0 \cdot 32$	0.56
$17-\beta-\mathrm{COCH}_{3}$	0.037	0.00	$0 \cdot 51$
$17-\beta-\mathrm{COCH}_{2} \mathrm{OH}$	0.332	$0 \cdot 15$	$0 \cdot 70$
17- α-Methyl-17- β-hydroxy	0.077	0.30	0.60
$17-\alpha$-Hydroxy-17- β - COCH_{3}	$0 \cdot 234$	$0 \cdot 25$	0.68
17- α-Hydroxy-17- β - $\mathrm{COCH}_{2} \mathrm{OH}$	$0 \cdot 500$	$0 \cdot 35$	0.94
3-Hydroxy-1,3,5-triene	0.525	0.56	0.39
$11,18-\mathrm{CH}-\mathrm{OH}^{\text {b }}$	0.267	$0 \cdot 25$	0.57
16- α-Hydroxy-17- β-hydroxy	$0 \cdot 324$	$0 \cdot 84$	0.83

[^1]Table 2. Coefficients of equation 1 for various water-solvent partitioning systems.

Solvent	c	r	s	a	b	v
Isobutanol $^{\mathrm{a}}$	0.249	0.480	-0.639	-0.050	-2.284	2.758
Octanol $^{\mathrm{b}}$	0.088	0.562	-1.054	-0.034	-3.460	3.814
${\text { Diethyl } \text { ether }^{\mathrm{a}}}^{0}$	0.462	0.571	-1.035	-0.024	-5.508	4.346
Benzene $^{\mathrm{a}}$	0.017	0.490	-0.604	-3.013	-4.628	4.587
Cyclohexane $^{\mathrm{a}}$	0.124	0.844	-1.800	-3.727	-4.923	4.692
Alkane $^{\mathrm{a}}$	0.281	0.647	-1.687	-3.520	-4.848	4.326
Hexadecane $^{\mathrm{b}}$	0.087	0.667	-1.617	-3.587	-4.869	4.433

[^2]π_{2}^{H} cannot be easily obtained from fragments unless they are large and non-interacting (Abraham et al 1994b). However, since we now only had this one descriptor to determine (after $\mathrm{R}_{2}, \Sigma \alpha_{2}^{\mathrm{H}}, \Sigma \beta_{2}^{\mathrm{H}}$ and Vx had been obtained), we used available partition coefficients of the steroids to back-calculate it, using established partition coefficient regression equations (Table 2). In several cases, more than one partition coefficient had been reported, and then the back-calculations served to confirm the total assigned set of descriptors. Partition coefficients of many of the steroids have been determined in the water-amylcaproate system (Scheuplein 1965; Scheuplein et al 1969). However, there were not enough data to obtain a regression equation for this system, but we used the $\log \mathrm{P}$ values as a check on the comparison between the steroids.

Application to water-skin partition coefficients

Scheuplein (1965) and Scheuplein et al (1969) determined water-skin (human abdominal stratum corneum) partition
coefficients-denoted as K_{m} and defined by equation 4-for eight alcohols and fourteen steroids, listed in Table 3.

$$
\begin{equation*}
\mathbf{K}_{\mathrm{m}}=\frac{[\text { mols of solute absorbed per unit mass dry tissue }]}{[\text { mols of solute in solution per unit mass of water }]} \tag{4}
\end{equation*}
$$

It was noted by Scheuplein et al (1969) that measured wateramylcaproate partition coefficients gave a guide to permeability, and were more suitable than water-hexadecane partition coefficients as a model. They, therefore, suggested that the stratum corneum was a more polar phase than had been previously understood. More recently, Tayar et al (1991) have re-examined the data of Scheuplein (1965) and Scheuplein et al (1969) and showed that there is a reasonable correlation between $\log \mathrm{K}_{\mathrm{m}}$ and $\log \mathrm{P}_{\text {oct }}$:

$$
\begin{align*}
& \log \mathrm{K}_{\mathrm{m}}=0.51 \log \mathrm{P}_{\mathrm{oct}}+0.10 \tag{5}\\
& \mathrm{n}=22 \quad \rho=0.971 \quad \text { s.d. }=0.156
\end{align*}
$$

Three values of $\log P_{\text {oct }}$ used in equation 5 were estimated; if these are excluded, equation 6 results:

$$
\begin{equation*}
\log K_{m}=0.514 \log P_{o c t}+0.104 \tag{6}
\end{equation*}
$$

$$
\mathrm{n}=19 \quad \rho=0.9694 \quad \text { s.d. }=0.163 \quad \mathrm{~F}=265.5
$$

Although equation 6 is quite good, it yields no information as to the factors that influence the partitioning process. Application of equation 1, with the descriptors given in Table 3, leads to equation 7 :

$$
\begin{align*}
& \log \mathrm{K}_{\mathrm{m}}=-0.027-0.374 \pi_{2}^{\mathrm{H}}+0.334 \Sigma \alpha_{2}^{\mathrm{H}}-1.674 \Sigma \beta_{2}^{\mathrm{H}} \\
&+1.869 \mathrm{Vx} \tag{7}\\
& \mathrm{n}=22 \quad \rho=0.9710 \quad \text { s.d. }=0.166 \quad \mathrm{~F}=70.2
\end{align*}
$$

Table 3. Values of water-skin partition coefficients, as $\log K_{m}$, and permeability coefficients, as $\log k_{p} . \log k_{p_{\text {beck }}}$ values are also given.

Solute	$\log \mathrm{K}_{\mathrm{m}}$	$\begin{gathered} \log k_{p}^{d e} \\ \left(\log k_{1}^{\text {dobs }}\right) \end{gathered}$	$\begin{aligned} & \log \mathrm{k}_{\mathrm{phoack}} \mathrm{fg} \\ & \left(\log \mathrm{k}_{2}^{\text {obs }}\right) \end{aligned}$	\mathbf{R}_{2}	π_{2}^{H}	$\Sigma \alpha_{2}^{\text {H }}$	$\Sigma \beta_{2}^{\text {H }}$	$\mathbf{V x}$
Methanol ${ }^{\text {a }}$	-0.22	-6.56	-6.34	0.278	0.44	0.43	0.47	$0 \cdot 308$
Ethanol ${ }^{\text {a }}$	-0.22	-6.56	-6.34	0.246	0.42	$0 \cdot 37$	0.48	0.449
Propan-1-ol ${ }^{\text {a }}$	0.30	-6.41	-6.71	0.236	$0 \cdot 42$	$0 \cdot 37$	0.48	0.590
Butan-1-ol ${ }^{\text {a }}$	$0 \cdot 40$	-6.16	-6.56	0.224	$0 \cdot 42$	$0 \cdot 37$	0.48	0.731
Pentan-1-ol ${ }^{\text {a }}$	0.70	-5.78	-6.48	0.219	$0 \cdot 42$	$0 \cdot 37$	0.48	0.872
Hexan-1-ol ${ }^{\text {a }}$	1.00	-5.44	-6.44	0.210	$0 \cdot 42$	0.37	$0 \cdot 48$	1.013
Heptan-1-ol ${ }^{\text {a }}$	1.48	-5.05	-6.53	0.211	0.42	0.37	0.48	$1 \cdot 154$
Octan-1-ol ${ }^{\text {a }}$	1.70	-4.84	-6.54	$0 \cdot 199$	$0 \cdot 42$	0.37	0.48	1.295
Progesterone ${ }^{\text {b }}$	2.01	-6.38	-8.39	1.450	$3 \cdot 29$	0.00	$1 \cdot 14$	$2 \cdot 622$
Pregnenolone ${ }^{\text {b }}$	1.70	-6.38	-8.08	1.360	$3 \cdot 29$	$0 \cdot 32$	$1 \cdot 18$	2.665
17 α-Hydroxypregnenolone ${ }^{\text {b }}$	1.63	-6.78	-8.41	1.550	3.35	0.57	$1 \cdot 35$	2.723
17α-Hydroxyprogesterone ${ }^{\text {b }}$	1.60	-6.78	-8.38	1.640	$3 \cdot 35$	$0 \cdot 25$	$1 \cdot 31$	2.680
Deoxycorticosterone ${ }^{\text {b }}$	1.57	-6.90	-8.47	1.674	3.39	$0 \cdot 15$	$1 \cdot 13$	2.680
Testosterone ${ }^{\text {b }}$	1.36	-6.95	-8.31	1.540	2.59	0.32	$1 \cdot 19$	2.383
Cortexolone ${ }^{\text {b }}$	1.36	-7.68	-9.04	1.910	$3 \cdot 45$	$0 \cdot 35$	1.57	2.739
Corticosterone ${ }^{\text {b }}$	1.23	-7.78	-9.01	1.860	$3 \cdot 43$	$0 \cdot 40$	1.63	2.739
Cortisone ${ }^{\text {b }}$	0.93	-8.56	-9.49	1.960	$3 \cdot 50$	$0 \cdot 35$	1.84	2.755
Hydrocortisone ${ }^{\text {b }}$	0.85	-9.08	-9.93	2.030	3.49	$0 \cdot 70$	1.87	2.798
Aldosterone ${ }^{\text {b }}$	0.83	-9.08	-9.91	2.010	$3 \cdot 47$	0.40	1.90	2.689
Oestrone ${ }^{\text {b }}$	1.66	-6.00	-7.66	1.730	$3 \cdot 10$	0.56	0.91	2.156
Oestradiol ${ }^{\text {b }}$	1.66	-7.08	-8.74	1.800	$3 \cdot 30$	$0 \cdot 88$	0.95	2.199
Oestriol ${ }^{\text {b }}$	1.36	-7.95	-9.31	2.000	3.36	$1 \cdot 40$	$1 \cdot 22$	2.258
Diethylether ${ }^{\text {c }}$		-5.35	--	0.041	0.25	$0 \cdot 00$	0.45	0.731
Butanone ${ }^{\text {c }}$	-	-5.90	-	$0 \cdot 166$	0.70	0.00	0.51	0.688
2-Ethoxyethanol ${ }^{\text {c }}$	-	$-7 \cdot 16$	-	0.237	0.50	$0 \cdot 30$	0.83	0.790

[^3]Equation 7 is not as good statistically as equation 6, judging by the F -statistic, but it is much more informative. It shows that the main factors that influence the waterstratum corneum partitioning process are solute basicity that favours water and solute size that favours the stratum corneum. Minor factors are solute dipolarity that favours water and solute acidity that favours the stratum corneum. Hence the stratum corneum behaves as though it is slightly less dipolar, slightly more basic, less acidic and more lipophilic than water. Comparison with equation 2 shows also that the stratum corneum is much less lipophilic than wet octanol ($\mathrm{v}=1.869$ in eqn $7 ; \mathrm{v}=3.814$ in eqn 2). Indeed, the stratum corneum is even less lipophilic than wet isobutanol ($\mathrm{v}=2 \cdot 758$, see Table 2), even though the solubility of water in isobutanol is $16.9 \% \mathrm{w} / \mathrm{w}$ at $25^{\circ} \mathrm{C}$ (Riddick \& Bunger 1970) corresponding to 0.49 mol fraction. The most likely explanation for this is that the stratum corneum in equilibrium with water is highly hydrated. This agrees with suggestions by Elias (1981), Raykar et al (1988) and Barry (1988). This might also explain why solute basicity affects water-stratum corneum partition much less than it does water-octanol partition ($b=-1.674$ in eqn $7 ; b=-3.460$ in eqn 2); i.e. the presence of a considerable quantity of water in the stratum corneum confers substantial acidity that partly counterbalances the very acidic aqueous phase. The stratum corneum, of course, is not a homogeneous phase, but equation 7 does suggest that not only the keratinfilled cells, but also the intercellular lipid phase contains water, in agreement with current knowledge. The water in the lipid phase is probably bound to the basic end-groups which will not, therefore, function so effectively as hydrogen-bond bases towards (hydrated) solute molecules.

Application to water-skin permeability coefficients

Permeability coefficients were also obtained by Scheuplein (1965) and Scheuplein et al (1969), given in Table 3 as $\log k_{p}$ with k_{p} in units of $\mathrm{cm} \mathrm{s}^{-1}$. For the 22 solutes, Tayar et al (1991), using the three estimated $\log \mathrm{P}_{\text {oct }}$ values, found:

$$
\begin{gather*}
\log \mathrm{k}_{\mathrm{p}}=0 \cdot 16 \log \mathrm{P}_{\mathrm{oct}}-7 \cdot 15 \tag{8}\\
\mathrm{n}=22 \quad \rho=0 \cdot 164 \quad \text { s.d. }=1 \cdot 170
\end{gather*}
$$

Using the 19 measured values only, a similarly very poor correlation, equation 9 , is given:

$$
\begin{align*}
& \log \mathrm{k}_{\mathrm{p}}=0.174 \log \mathrm{P}_{\text {oct }}-7.121 \tag{9}\\
& \mathrm{n}=19 \quad \rho=0.176 \quad \text { s.d. }=1.232 \quad \mathrm{~F}=0.5
\end{align*}
$$

This very poor correlation is due to the values for the alcohols and the steroids lying on two distinct lines (Fig. 2).

A much better correlation was obtained by Tayar et al (1991) with the $\Delta \log P$ parameter, if cortisone was omitted:

$$
\begin{align*}
& \log k_{p}=-1.36 \Delta \log P-3.38 \tag{10}\\
n=21 \quad r=0.901 & \text { s.d. }=0.498
\end{align*}
$$

Tayar et al (1991) explained this correlation on the basis that the $\Delta \log P$ parameter mainly reflects solute hydrogen-bond acidity and that this has a retarding effect on permeability through interactions of the acidic groups in the solute with basic groups in the lipid phase during an intercellular route.

Fig. 2. Log plot of permeability coefficient vs $P_{\text {oct }}$ for 19 alcohols (\square) and steroids (\triangle) (excluding pregnenolone, 17α-hydroxypregnenolone and oestriol for which measured $\mathrm{P}_{\mathrm{oct}}$ values were not available).

However, we know from equation 3 that the $\Delta \log P$ parameter is not just a measure of solute hydrogen-bond acidity but is a composite parameter involving lipophilicity, basicity and dipolarity, as well as acidity. $\Delta \log P$ may be useful as a descriptor for the prediction of further permeability values, but it is of little value in the interpretation of the permeability process.

We have applied equation 1 to the 22 solutes used by Tayar et al (1991) to arrive at an alternative equation to equation 10 , equation 11 . We have also used a further three values given by Scheuplein \& Blank (1971)—those for diethylether, 2-ethoxyethanol and butanone (denoted the Extra-S set, listed in Table 3)-to yield equation 12:

$$
\begin{align*}
\log \mathrm{k}_{\mathrm{p}}= & -5.333-0.622 \pi_{2}^{\mathrm{H}}-0.378 \Sigma \alpha_{2}^{\mathrm{H}}-3.342 \Sigma \beta_{2}^{\mathrm{H}} \\
& +1.851 \mathrm{Vx} \tag{11}\\
\mathrm{n}= & 22 \quad \rho=0.9781 \quad \text { s.d. }=0.268 \quad \mathrm{~F}=93.7 \\
\log \mathrm{k}_{\mathrm{p}}= & -5.194-0.567 \pi_{2}^{\mathrm{H}}-0.506 \Sigma \alpha_{2}^{\mathrm{H}}-3.368 \Sigma \beta_{2}^{\mathrm{H}} \\
& +1.767 \mathrm{Vx} \tag{12}\\
\mathrm{n}= & 25 \quad \rho=0.9780 \quad \text { s.d. }=0.260 \quad \mathrm{~F}=110.1
\end{align*}
$$

There is a profound difference between an analysis based on equation 11 and the analysis of Tayar et al (1991) based on equation 10. The former shows that the two main factors that influence permeability are solute hydrogen-bond basicity that reduces permeability and solute size (or lipophilicity) that increases permeability. A less important factor is solute dipolarity that reduces permeability. In striking contrast to the analysis of Tayar et al (1991), solute acidity plays little part. This is understandable on the basis that the large amounts of water in the stratum corneum (as deduced from the above partition studies) render it sufficiently acidic to retard the passage of basic compounds but not acidic compounds. It should be noted that although water has basic as well as acidic properties, monomeric water is no more basic than simple alcohols, and bulk water is even less basic than are bulk alcohols (Kamlet et al 1983).

Table 4. Values of permeability coefficients, as $\log k_{p}$, and solute descriptors, for phenols ${ }^{\text {a }}$ and alcohols ${ }^{b}$.

Solute						
	$\log \mathrm{k}_{\mathrm{p}}$	R_{2}	π_{2}^{H}	$\Sigma \alpha_{2}^{\mathrm{H}}$	$\Sigma \beta_{2}^{\mathrm{H}}$	Vx
Resorcinol	-7.18	0.980	1.00	$1 \cdot 10$	0.58	0.834
4-Nitrophenol	-5.81	1.070	1.72	0.82	0.26	0.949
3-Nitrophenol	-5.81	1.050	1.57	0.79	0.23	0.949
Phenol	-5.64	0.805	0.89	0.60	0.30	0.775
Methyl 4-hydroxy-						
benzoate	-5.60	0.900	1.37	0.69	0.45	1.132
m-Cresol	-5.37	0.822	0.88	0.57	0.34	0.916
o-Cresol	-5.36	0.840	0.86	0.52	0.30	0.916
p-Cresol	-5.31	0.820	0.87	0.57	0.31	0.916
2-Naphthol	$-5 \cdot 11$	1.520	1.08	0.61	0.40	1.144
2-Chlorophenol	-5.04	0.853	0.88	0.32	0.31	0.898
4-Ethylphenol	-5.01	0.800	0.90	0.55	0.36	1.057
3,4-Dimethylphenol	-5.00	0.830	0.86	0.56	0.39	1.057
4-Bromophenol	-5.00	1.080	1.17	0.67	0.20	0.950
4-Chlorophenol	-5.00	0.915	1.08	0.67	0.20	0.898
2-Isopropyl-5-ethylphenol	-4.83	0.822	0.79	0.52	0.44	1.339
4-Chloro-3-methylphenol	-4.82	0.920	1.02	0.65	0.22	1.038
4-Chloro-3,5-dimethyl-						
phenol	-4.79	0.925	0.96	0.64	0.21	1.179
2,4,6-Trichlorophenol	-4.78	1.010	1.01	0.82	0.08	1.142
2,4-Dichlorophenol	-4.78	0.960	0.99	0.58	0.14	1.020
Benzyl alcohol	-5.78	0.083	0.87	0.33	0.50	0.916
2-Phenylethanol	-5.68	0.811	0.91	0.30	0.64	1.057

${ }^{a} \log k_{p}$ values from Roberts et al (1977) and ${ }^{b}$ Roberts (1976).

Another dataset that is suitable for analysis through equation 1, is that of Roberts et al (1977) (Table 4). Tayar et al (1991) found only a poor correlation with the $\Delta \log \mathrm{P}$ parameter for this set of phenols:

$$
\begin{gather*}
\log \mathrm{k}_{\mathrm{p}}=-0.37 \Delta \log \mathrm{P}-4.43 \tag{13}\\
\mathrm{n}=18 \quad \rho=0.675 \quad \text { s.d. }=0.441
\end{gather*}
$$

They suggested that possibly the phenols permeate by two different routes, depending on their lipophilicities. However, we do not find any such distinction as indicated in equation 14:

$$
\begin{align*}
\log \mathrm{k}_{\mathrm{p}}= & -4.994-0.341 \pi_{2}^{\mathrm{H}}-1.691 \Sigma \alpha_{2}^{\mathrm{H}}-2.689 \Sigma \beta_{2}^{\mathrm{H}} \\
& +1.965 \mathrm{Vx} \tag{14}\\
\mathrm{n}= & 19 \quad \rho=0.9696 \quad \text { s.d. }=0.160 \quad \mathrm{~F}=54.9
\end{align*}
$$

Note that in equation 14 we have one extra datapoint, compared with equation 13; this corresponds to a phenol which was ambiguously described as chloroxylenol by Roberts et al (1977) and which we identified as 4-chloro-3,5-dimethylphenol.

Comparison of equations 14 and 11 shows that for the phenols there is a significant term in solute acidity, whereas for the alcohols and steroids there is no such term. It is likely that this reflects the particular solute sets, and is not necessarily due to a fundamental difference in permeation mechanism.

An extension of the analysis is to combine the two datasets. This can be done because both research groups used the same methodology and the same skin type (human abdominal). Furthermore, the combined dataset can be extended by two datapoints-those for benzyl alcohol and 2-phenylethanol (denoted the Extra-R set)-obtained by Roberts (1976). This leads to equation 15:

$$
\begin{align*}
\log \mathrm{k}_{\mathrm{p}}= & -5.048-0.586 \pi_{2}^{\mathrm{H}}-0.633 \Sigma \alpha_{2}^{\mathrm{H}}-3.481 \Sigma \beta_{2}^{\mathrm{H}} \\
& +1.787 \mathrm{Vx} \tag{15}\\
\mathrm{n}=46 \quad \rho=0.9789 & \text { s.d. }=0.249 \quad \mathrm{~F}=235.0
\end{align*}
$$

Clearly, the equation has not collapsed on combination of the two datasets. We suggest, therefore, that as well as being the best equation for the alcohols, steroids and phenols, it is also the best general equation available for application to new compounds. On this basis, there is no dual mechanism within these classes of compounds. Indeed, any division into intercellular and transcellular routes is arbitrary, bearing in mind that the intercellular phase, and the cells themselves, both contain lipids and both will be to some extent hydrated. The interpretation of equation 15 follows closely that of equation 12 , except that it appears that solute acidity retards permeation to a small extent.

Further Analysis of the $\log \mathbf{P}_{\text {oct }}$ Model

Fig. 2 shows, for the alcohols and steroids, that when $\log k_{p}$ is plotted against $\log P_{\text {oct }}$ the data splits into two distinct groups, one for the alcohols and one for the steroids. Our analysis shows that this is mainly due to the difference in the volume term in the $\log \mathrm{k}_{\mathrm{p}}$ and $\log \mathrm{P}_{\text {oct }}$ regressions (compare eqns 2 and 12). In order to extend our analysis, we have correlated the phenolic $\log k_{p}$ values of Roberts et al (1977) with $\log P_{\text {oct }}$, equation 16. The correlation is much better than for equation 8 because the dataset covers a congeneric series within which the volume does not vary very much.

$$
\begin{equation*}
\log k_{p}=0.689 \log P_{o c t}-6.915 \tag{16}
\end{equation*}
$$

$$
\mathrm{n}=19 \quad \rho=0.8509 \quad \text { s.d. }=0.311 \quad \mathrm{~F}=44.6
$$

Thus for congeneric series-such as alcohols, steroids and phenols taken separately-reasonable correlations are obtained between $\log P_{\text {oct }}$ and $\log k_{p}$. The reason for this is not that there are different mechanisms but is simply due to the lack of variation of the solute descriptors within each of the series (see Tables 3, 4). The alcohol series best illustrates this, where the $\pi_{2}^{\mathrm{H}}, \Sigma \alpha_{2}^{\mathrm{H}}$ and $\Sigma \beta_{2}^{\mathrm{H}}$ values remain the same and only the Vx descriptor varies. However, if all of the $\log k_{p}$ data used in this work are taken as a whole, $\log \mathrm{P}_{\text {oct }}$ provides only a very poor correlation, illustrated by equation 17 and Fig. 3.

$$
\begin{array}{lll}
& \log k_{p}=0.386 \log P_{o c t}-6.787 \tag{17}\\
n=43 & r=0.3609 & \text { s.d. }=1.094 \quad F=6.1
\end{array}
$$

The reason for the very poor correlation of $\log k_{p}$ against $\log P_{\text {oct }}$ can be understood by comparing the equations 2 and 15. The main difference is that the coefficient in $\mathrm{Vxx}_{\mathrm{x}}$ is much larger for the $\log \mathrm{P}_{\text {oct }}$ regression (3.814) than for the $\log \mathrm{k}_{\mathrm{p}}$ regression (1.787). This suggests that if the regression of $\log k_{p}$ against $\log P_{\text {oct }}$ were adjusted by the incorporation of a corrective term in Vx, a much better regression would be obtained:

$$
\begin{align*}
\log \mathrm{k}_{\mathrm{p}} & =0.812 \log \mathrm{P}_{\text {oct }}-1.474 \mathrm{Vx}-5.631 \tag{18}\\
\mathrm{n}=43 & \rho
\end{align*}=0.9581 \quad \text { s.d. }=0.340 \quad \mathrm{~F}=223.9 \mathrm{l}, ~ l
$$

Fig. 3. Log plot of permeability coefficient vs $P_{\text {oct }}$ for all 43 available compounds. \square Alcohols, \boldsymbol{A} steroids, Extra-S, \bigcirc phenols, \diamond Extra-R.

This simple volume correction to $\log \mathrm{P}_{\text {oct }}$ transforms the scatter diagram in Fig. 3 to a reasonably linear relationship shown in Fig. 4. Conversely, the scatter plot of $\log k_{p}$ against $\log P_{\text {oct }}$, that has always been held as evidence of a two-route mechanism of permeation, is shown to be no more than an artefact due to the use of a model solvent that is too lipophilic compared with the stratum corneum.
The relationship between equations 15 and 18 explains how Takahashi et al (1993) were able to correct $\log \mathrm{P}_{\text {oct }}$ by a mol. wt descriptor in order to correlate $\log _{\mathrm{p}}$ values for six narcotic analgesics, since mol. wt is roughly proportional to volume. It explains also how Potts \& Guy (1992) were earlier able to set out equations 19 and 20 for the prediction of $\log k_{p}$ values using a similar data set to the one we have used:

$$
\begin{gathered}
\log k_{p}=-6.2+0.74 \log P_{\text {oct }}-0.0108 \mathrm{MV} \\
\mathrm{n}=42 \quad \rho=0.91
\end{gathered}
$$

$$
\begin{gather*}
\log \mathrm{k}_{\mathrm{p}}=-6.0+0.70 \log \mathrm{P}_{\mathrm{oct}}-0.0050 \mathrm{MW} \tag{20}\\
\mathrm{n}=42 \quad \rho=0.91
\end{gather*}
$$

For a much larger data set, a similar equation to equation 20 had $\mathrm{n}=89$ and $\rho=0.82$ (Guy \& Potts 1993). In the above equations, MV is the calculated molar volume and MW is the mol. wt. Our own version of equation 20 is:

$$
\begin{equation*}
\log k_{p}=-5.740+0.851 \log P_{\text {oct }}-0.012 M W \tag{21}
\end{equation*}
$$

$$
\mathrm{n}=43 \quad \rho=0.9628 \quad \text { s.d. }=0.321 \quad \mathrm{~F}=253.6
$$

Modification of the $\log \mathrm{P}_{\text {oct }}$ descriptor by either a volume term or the mol. wt thus provides a useful predictive equation (Potts \& Guy 1992). However, our analysis through equations 15 and 18 well illustrates the theoretical reason for the success of such predictive equations. In practical terms, our own equations using the modified $\log \mathrm{P}_{\text {oct }}$ descriptor, equations 18 and 21 yield standard

Fig. 4. Log plot of permeability coefficient vs volume adjusted $P_{\text {oct }}$ for all 43 available values. \square Alcohols, Δ steroids, - Extra-S, O phenols, \square Extra-R.
deviations of around $0.33 \log$ units in $\log \mathrm{k}_{\mathrm{p}}$, as compared with an s.d. value of 0.25 for the full equation (eqn 15). Thus, provided it is not too difficult to determine or estimate the descriptors in equation 15 , it still seems worthwhile to use the full equation to estimate any value in $\log \mathrm{k}_{\mathrm{p}}$.

Comparison of Equilibrium $\left(\log K_{m}\right)$ and Kinetic Measurements $\left(\log k_{p}\right)$

The Scheuplein dataset of Table 3 contains the results of two different types of measurement: the equilibrium waterstratum corneum partition $\left(\log \mathrm{K}_{\mathrm{m}}\right)$ and the permeation rate $\left(\log k_{p}\right)$ from water through the skin. If the stratum corneum is the principal barrier to permeation from water through the skin, i.e. the forward direction, it will also be the principal barrier to permeation in the reverse direction, i.e. through the stratum corneum back into the water. We refer to the rate of the reverse direction as $\mathrm{k}_{\mathrm{p}_{\text {back }}}$. This quantity can be obtained from the equilibrium partition and the forward permeation through equations 22 and 23.

$$
\begin{gather*}
\log K_{m}=\log k_{p} / k_{p_{\text {back }}} \tag{22}\\
\log \mathrm{k}_{\mathrm{P}_{\text {back }}}=\log \mathrm{k}_{\mathrm{p}}-\log \mathrm{K}_{\mathrm{m}} \tag{23}
\end{gather*}
$$

The regression equation for $\log k_{\text {pask }}$, based on equation 1 and using the dataset in Table 3, is given by equation 24, which is very different to the $\log \mathrm{k}_{\mathrm{p}}$ equation (eqn 11).

$$
\begin{align*}
\log \mathrm{k}_{\text {Pback }}= & -5.304-0.247 \pi_{2}^{\mathrm{H}}-0.716 \Sigma \alpha_{2}^{\mathrm{H}}-1.670 \Sigma \beta_{2}^{\mathrm{H}} \\
& -0.018 \mathrm{Vx} \tag{24}\\
\mathrm{n}=22 \quad & \rho=0.9849
\end{align*} \quad \text { s.d. }=0.242 \quad \mathrm{~F}=137.5
$$

A possible explanation for this can be found in the work of van de Waterbeemd et al (1981), who compared the rate constants for solutes going into, $\mathrm{k}_{1}^{\text {obs }}$, and out of, $\mathrm{k}_{2}^{\text {obs }}$, octanol at the interface of a water-octanol system (also see discussion by Dearden (1990)) with the equilibrium constant $\log P_{\text {oct }}$. They suggested that when the inward rate constant $\mathrm{k}_{1}^{\text {obs }}$ is proportional to the equilibrium constant $\log \mathrm{P}_{\text {oct }}$ then the rate controlling step is k_{1} (see Fig. 5) and that the backward rate constant $\mathrm{k}_{2}^{\text {obs }}$ is diffusion-controlled at the

Fig. 5. The interfacial transfer of a solute, S, described by a threestep mechanism for the water-octanol system. Adapted from van de Waterbeemd et al (1981).
stagnant organic layer ($k_{2}^{\prime \prime}$ in Fig. 5). Since in our work we find that the regression equations for $\log k_{p}$ (inward rate constant) and $\log K_{m}$ (equilibrium constant) are similar whilst that for $\log \mathrm{k}_{\mathrm{p}_{\text {back }}}$ (backward rate constant) is very different then this suggests, following on from the ideas of van de Waterbeemd et al (1981), that $\log \mathrm{k}_{\text {pback }}$ could be entirely or partially diffusion controlled. This is supported by the fact that the coefficients in equation 24 (except that for the small acidity term) are smaller than those in equation 11, implying that structural effects have a smaller effect on $\operatorname{logk}_{\mathrm{p}_{\text {tack }}}$ than on $\log \mathrm{k}_{\mathrm{p}}$.

Conclusions

Analysis of water-skin partition coefficients, $\log \mathrm{K}_{\mathrm{m}}$, by the solvation equation (eqn 1) shows that the main factors involved are solute basicity that favours water, and solute size or lipophilicity that favours the stratum corneum. These results can be rationalized if stratum corneum is highly aqueous (as would be expected under hydrating conditions), and hence is somewhat acidic but still less acidic than bulk water. A similar analysis of stratum corneum permeability coefficients ($\log k_{p}$) for alcohols, steroids, and phenols shows that $\log k_{p}$ is greatly retarded by solute basicity, slightly retarded by solute dipolarity and acidity, and greatly increased by solute lipophilicity. These permeability results can be rationalized on the same basis as the water-skin partition coefficients.

Unlike previously published models, it has been demonstrated that skin permeability coefficients can be accounted for by a single high quality regression equation covering a wide and disparate set of chemical functionality. This indicates that it is likely there is only a single penetration mechanism rather than several mechanisms. This conclusion is very important, particularly in the context of the absorption of toxic chemicals where predictions of dermal absorption and dermal toxicity depend crucially on whether a tworoute (Fiserova-Bergerova et al 1990) or a one-route mechanism applies (Guy \& Potts 1993). Our findings support the conclusions of the latter workers.

Comparison of the regression equations for $\log K_{m}, \log k_{p}$ and $\log \mathrm{k}_{\text {poack }}$ suggests that the physicochemical factors controlling $\log \mathrm{k}_{\text {Phack }}$ are very different to those controlling $\log K_{m}$ and $\log k_{p}$. This can be rationalized on the basis that $\log \mathrm{k}_{\mathrm{p} \text { back }}$ is largely diffusion controlled.

Although there is a reasonable correlation of waterstratum corneum partition coefficients with $\log \mathrm{P}_{\text {oct }}$, the latter cannot be used to correlate water-stratum corneum permeation coefficients for different families of solute. However, if $\log P_{\text {oct }}$ is corrected by a solute volume term, a good correlation is found between $\log k_{p}$ and the corrected $\log P_{\text {oct }}$ term, which could be used to estimate further $\log k_{p}$ values. Our analysis also explains the success of the correlations based on $\log P_{\text {oct }}$ and mol. wt.

Acknowledgements

We thank Dr Kenneth R. Harris, University of New South Wales, Australia, for kindly sending us the extra data in the PhD Thesis of Roberts (1976) and the International Journal of Cosmetic Science for permission to reproduce Fig. 1.

References

Abraham, M. H. (1993a) Scales of hydrogen bonding: their construction and application to physicochemical and biochemical processes. Chem. Soc. Rev. 22: 73-83
Abraham, M. H. (1993b) Hydrogen-bonding 31. Construction of a scale of solute effective or summation hydrogen bond basicity. J. Phys. Org. Chem. 6: 660-684

Abraham, M. H., McGowan, J. C. (1987) The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography. Chromatographia 23: 243-246
Abraham, M. H., Grellier, P. L., Prior, D. V., Duce, P. P., Morris, J. J., Taylor, P. J. (1989) Hydrogen bonding 7. A scale of hydrogen bond acidity based on $\log \mathrm{K}$ values for complexation in tetrachloromethane. J. Chem. Soc., Perkin Trans. 2: 699-711
Abraham, M. H., Whiting, G. S., Doherty, R. M., Shuely, W. J. (1990a) Hydrogen-bonding part 13. A new method for characterisation of GLC stationary phases-the Laffort dataset. J. Chem. Soc., Perkin Trans. 2: 1451-1460
Abraham, M. H., Grellier, P. L., Prior, D. V., Morris, J. J., Taylor, P. J. (1990b) Hydrogen-bonding part 10. A scale of solute hydrogen bond basicity using $\log \mathrm{K}$ values for complexation in tetrachloromethane. J. Chem. Soc., Perkin Trans. 2: 521-529
Abraham, M. H., Whiting, G. S., Doherty, R. M., Shuely, W. J. (1991) Hydrogen-bonding 16. A new solute solvation parameter pi-h2 from gas chromatographic data. J. Chromatogr. 587: 213228
Abraham, M. H., Chadha, H. S., Whiting, G. S., Mitchell, R. C. (1994a) Hydrogen bonding part 32. An analysis of water-octanol and water-alkane partitioning and the $\Delta \log P$ parameter of Seiler. J. Pharm. Sci. 83: 1085-1100
Abraham, M. H., Chadha, H. S., Mitchell, R. C. (1994b) Hydrogen bonding part 33. The factors that influence the distribution of solutes between blood and brain. J. Pharm. Sci. 83: 1257-1266
Barry, B. W. (1988) Action of skin penetration enhancers-the lipid protein partitioning theory. Int. J. Cosm. Sci. 10: 281-293
Dearden, J. C. (1990) Molecular structure and drug transport. In: Hansch, C. (ed.) Comprehensive Medicinal Chemistry. Vol. 4, Pergamon Press, Oxford, pp 375-411
Elias, P. M. (1981) Epidermal lipids, membranes and keratinisation. Int. J. Dermatol. 20: 1-19
Fiserova-Bergerova, V., Pierce, J. T., Drot, P. O. (1990) Dermal absorption potential of industrial chemicals across the skin: criteria for skin notation. Am. J. Ind. Med. 17: 617-635
Grayson, S., Elias, P. M. (1982) Isolation and lipid biochemical characterisation of the stratum corneum call membrane complexes: implications for the cutaneous permeability barrier. J. Invest. Dermatol. 78: 128-135

Guy, R. H., Potts, R. O. (1993) Penetration of industrial chemical across the skin: a predictive model. Am. J. Ind. Med. 23: 711-719
Houk, J., Guy, R. H. (1988) Membrane models for skin penetration studies. Chem. Rev. 88: 455-471
Kai, T., Isami, T., Kotabata, K., Kurosaki, Y., Nakayama, T., Kimura, T. (1992) Keratinised epithelial transport of β-blocking agents. I. Relationship between physicochemical properties of
drugs and the flux across rat skin and hamster cheek pouch. Chem. Pharm. Bull. 40: 2498-2504
Kamlet, M. J., Abboud, J.-L. M., Abraham, M. H., Taft, R. W. (1983) Linear solvation energy relationships. 23. A comprehensive collection of solvatochromic parameters, π^{*}, α and β and some methods for simplifying the generalised solvatochromic equation. J. Org. Chem. 48: 2877-2887
Leahy, D. E., Morris, J. J., Taylor, P. J., Wait, A. R. (1992) Model solvent systems for QSAR, Part 3. An LSER analysis of the critical quartet. New light on hydrogen bonding strength and directionality. J. Chem. Soc., Perkin Trans. 2: 705-722
Marks, R. M., Barton, S. P., Edwards, C. (1988) The physical nature of skin. MTP Press Ltd, Lancaster
Potts, R. O., Guy, R. H. (1992) Predicting skin permeability. Pharm. Res. 9: 663-669
Raykar, P. V., Fung, M. C., Anderson, B. D. (1988) The role of protein and lipid domains in the uptake of solutes by human stratum corneum. Pharm. Res. 5: 140-150
Riddick, J. A., Bunger, W. B. (1970) Organic Solvents. Wiley Interscience, New York
Roberts, M. S. (1976) Percutaneous Absorption of Phenolic Compounds. PhD Thesis, University of Sydney
Roberts, M. S., Anderson, R. A., Swarbrick, J. (1977) Permeability of human epidermis to phenolic compounds. J. Pharm. Pharmacol. 29: 677-683
Scheuplein, R. J. (1965) Mechanisms of percutaneous adsorption. I. Routes of penetration and the influence of solubility. J. Invest. Dermatol. 45: 334-346
Scheuplein, R. J. (1978) The skin as a barrier. In: Jarrett, A. J. (ed.) The Physiology and Pathophysiology of the Skin. Academic Press, London, pp 1669-1751
Scheuplein, R. J., Blank, I. H. (1971) Permeability of the skin. Physiol. Rev. 51: 702-747
Scheuplein, R. J., Blank, I. H., Brauner, M. D., MacFarlane, D. J. (1969) Percutaneous absorption of steroids. J. Invest. Dermatol. 52: 63-70
Seiler, P. (1974) Interconversion of lipophilicities from hydrocarbon/water systems into octanol/water systems. Eur. J. Med. Chem-. Chim. Therap. 9: 473-479
Singh, S., Singh, J. (1993) Transdermal drug delivery by positive diffusion and iontophoresis: a review. Med. Res. Rev. 13: 519521
Takahashi, K., Tamagawa, S., Katagi, T., Rytting, J. H., Nishihata, T., Mizuno, N. (1993) Percutaneous permeation of basic compounds through shed snake skin as a model membrane. J. Pharm. Pharmacol. 45: 882-886
Tayar, N. E., Tsai, R. S., Testa, B., Carrupt, P. A., Hansch, C., Leo, A. (1991) Percutaneous penetration of drugs: a quantitative structure permeability relationship study. J. Pharm. Sci. 80: 744-749
van de Waterbeemd, H., Boekel, C. C. A. A., De Sevaux, R. L. F. M., Jansen, A. C. A., Gerritsma, K. W. (1981) Transport in QSAR IV. The interfacial drug transfer model. Relationships between partition coefficients and rate constants in drug partitioning. Pharm. Weekbl. [Sci.] 3: 224-236

[^0]: *Regarded as Part 37 in the series "Hydrogen Bonding".
 Correspondence: M. H. Abraham, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.

[^1]: ${ }^{a}$ The given ΔR_{2} values are to be added to $1 \cdot 15$ for the hydrocarbon four-ring steroid system. ${ }^{\text {b }}$ In aldosterone.

[^2]: ${ }^{\text {a }}$ Abraham (1993a). ${ }^{\text {b }}$ Abraham et al (1994a).

[^3]: ${ }^{a} \log K_{m}$ and $\log k_{p}$ values from Scheuplein (1965); ${ }^{b} \log K_{m}$ and $\log k_{p}$ values from Scheuplein et al (1969); ${ }^{c} \log k_{p}$ values from Scheuplein \& Blank (1971). ${ }^{\text {d }}$ This is the inward permeation rate and could be described as $\log \mathrm{k}_{\mathrm{p}_{\mathrm{in}}}$, but is denoted $\log \mathrm{k}_{\mathrm{p}}$ for consistency. ${ }^{\text {e }}$ Equivalent to k_{1} rate constant. ${ }^{\text {f }}$ Calculated from equation $19 .{ }^{8}$ Equivalent to k_{2} rate constant.

